
shelmet Documentation
Release 0.6.0

Derrick Gilland

Mar 29, 2021

CONTENTS

1 Links 3

2 Features 5

3 Quickstart 7

4 Guide 13
4.1 Installation . 13
4.2 API Reference . 13
4.3 Developer Guide . 32

4.3.1 Python Environments . 32
4.3.2 Tooling . 32
4.3.3 Workflows . 33
4.3.4 CI/CD . 34

5 Project Info 35
5.1 License . 35
5.2 Versioning . 35
5.3 Changelog . 35

5.3.1 v0.6.0 (2021-03-29) . 35
5.3.2 v0.5.0 (2021-03-04) . 36
5.3.3 v0.4.0 (2021-01-26) . 36
5.3.4 v0.3.0 (2020-12-24) . 36
5.3.5 v0.2.0 (2020-11-30) . 37
5.3.6 v0.1.0 (2020-11-16) . 37

5.4 Authors . 38
5.4.1 Lead . 38
5.4.2 Contributors . 38

5.5 Contributing . 38
5.5.1 Types of Contributions . 38
5.5.2 Get Started! . 39
5.5.3 Pull Request Guidelines . 40

6 Indices and Tables 41

Python Module Index 43

Index 45

i

ii

shelmet Documentation, Release 0.6.0

A shell power-up for working with the file system and running subprocess commands.

CONTENTS 1

https://pypi.python.org/pypi/shelmet/
https://github.com/dgilland/shelmet/actions
https://coveralls.io/r/dgilland/shelmet
https://pypi.python.org/pypi/shelmet/

shelmet Documentation, Release 0.6.0

2 CONTENTS

CHAPTER

ONE

LINKS

• Project: https://github.com/dgilland/shelmet

• Documentation: https://shelmet.readthedocs.io

• PyPI: https://pypi.python.org/pypi/shelmet/

• Github Actions: https://github.com/dgilland/shelmet/actions

3

https://github.com/dgilland/shelmet
https://shelmet.readthedocs.io
https://pypi.python.org/pypi/shelmet/
https://github.com/dgilland/shelmet/actions

shelmet Documentation, Release 0.6.0

4 Chapter 1. Links

CHAPTER

TWO

FEATURES

• Run and define subprocess commands

– run

– cmd

• Interact with files

– atomicdfile, atomicdir

– read, readchunks, readlines, readtext, readbytes

– write, writechunks, writelines, writetext, writebytes

– fsync, dirsync

• Execute core shell operations

– cp, mv, mkdir, touch

– rm, rmfile, rmdir

– ls, lsfiles, lsdirs

– walk, walkfiles, walkdirs

• Archive and backup files

– archive, unarchive, lsarchive

– backup

• Other utilities

– cd

– environ

– cwd, homedir

– and more!

• 100% test coverage

• Fully type-annotated

• Python 3.6+

5

shelmet Documentation, Release 0.6.0

6 Chapter 2. Features

CHAPTER

THREE

QUICKSTART

Install using pip:

pip3 install shelmet

Import the sh module:

import shelmet as sh

Run system commands:

sh.run() is a wrapper around subprocess.run() that defaults to output capture, text-
→˓mode,
exception raising on non-zero exit codes, environment variable extension instead of
replacement, and support for passing command arguments as a variable number of
→˓strings
instead of just a list of strings.
result = sh.run("ps", "aux")
print(result.stdout)
print(result.stderr)

stdout and stderr can be combined with...
result = sh.run("some", "command", combine_output=True)

or not captured at all...
sh.run("...", capture_output=False)

Create reusable run commands that support chained commands like “pipe” | , “and” &&, “or” ||, and “after” ;:

sh.cmd() returns a sh.Command object that can be used to execute a fixed command.
ps_aux = sh.cmd("ps", "aux")

And has the option to pipe it's output into another command automatically.
grep_ps = ps_aux.pipe("grep", "-i", check=False)
print(grep_ps.shell_cmd)
ps aux | grep -i

search_result_1 = grep_ps.run("search term 1")
print(search_result_1.stdout)

search_result_2 = grep_ps.run("search term 2")
print(search_result_2.stdout)

Equivalent to: mkdir foo && echo 'success' || echo 'failure'
sh.cmd("mkdir", "foo").and_("echo", "success").or_("echo", "failure").run()

7

shelmet Documentation, Release 0.6.0

Perform file system operations:

Make directories and sub-directories. Behaves like "$ mkdir -p"
sh.mkdir("a", "b", "c", "d/e/f/g")

Context-manager to change working directory temporarily. Behaves like "$ cd".
with sh.cd("d/e/f/g"):

sh.touch("1.txt", "2.txt", "3.txt")

Move files or directories. Works across file-systems. Behaves like "$ mv".
sh.mv("1.txt", "11.txt")

Copy files or directories. Behaves like "$ cp -r"
sh.cp("2.txt", "22.txt")

List top-level directory contents.
NOTE: sh.ls() and its siblings return iterables.
list(sh.ls())

Limit to files.
list(sh.lsfiles())

Limit to directories.
list(sh.lsdirs())

Remove files.
sh.rmfile("11.txt", "22.txt", "3.txt")
Or use sh.rm which handles both files and directories.
sh.rm("11.txt", "22.txt", "3.txt")

Recursively walk current directory.
NOTE: sh.walk() and its siblings return iterables.
list(sh.walk())

Or just a specified directory.
list(sh.walk("d"))

Or just it's files or directories.
list(sh.walkfiles())
list(sh.walkdirs())

Remove directories.
sh.rmdir("a", "b", "c", "d")
Or use sh.rm which handles both files and directories.
sh.rm("a", "b", "c", "d")

Perform file IO:

sh.write("test.txt", "some text\n")
sh.write("test.txt", " some more text\n", "a")

sh.write("test.bin", b"some bytes")
sh.write("test.bin", b" some more bytes", "ab")

sh.writelines("output.txt", ["1", "2", "3"]) # -> "1\n2\n3\n"
sh.writelines("output.txt", (str(i) for i in range(5))) # -> "0\n1\n2\n3\n4\n"

Write to a file atomically. See sh.atomicfile for more details.

(continues on next page)

8 Chapter 3. Quickstart

shelmet Documentation, Release 0.6.0

(continued from previous page)

sh.write("test.txt", "content", atomic=True)
sh.writelines("test.txt", ["content"], atomic=True)

text = sh.read("test.txt") # -> "some text\nsome more text\n"
data = sh.read("text.bin", "rb") # -> b"some bytes some more bytes"

for line in sh.readlines("test.txt"):
print(line)

for chunk in sh.readchunks("test.txt", size=1024):
print(chunk)

sh.write("test.txt", "a|b|c|d")
items = list(sh.readchunks("test.txt", sep="|"))
print(items) # -> ["a", "b", "c", "d"]

sh.write("test.txt", b"a|b|c|d", "wb")
assert "".join(sh.readchunks("test.txt", "rb", sep=b"|")) == b"a|b|c|d"

Backup files:

Create backup as copy of file.
backup_file = sh.backup("a.txt")
print(backup_file) # a.txt.2021-02-24T16:19:20.
→˓276491~
sh.backup("a.txt", utc=True) # a.txt.2021-02-24T11:19:20.
→˓276491Z~
sh.backup("a.txt", epoch=True) # a.txt.1614878783.56201
sh.backup("a.txt", suffix=".bak") # a.txt.2021-02-24T16:19:20.
→˓276491.bak
sh.backup("a.txt", suffix=".bak", timestamp=False) # a.txt.bak
sh.backup("a.txt", prefix="BACKUP_", suffix="") # BACKUP_a.txt.2021-02-
→˓24T16:19:20.276491

Create backup as copy of directory.
sh.backup("path/to/dir") # path/to/dir.2021-02-24T16:19:20.
→˓276491~

Create backup as archive of file or directory.
sh.backup("b/c", ext=".tar.gz") # b/c.2021-02-24T16:19:20.276491.
→˓tar.gz
sh.backup("b/c", ext=".tar.bz2") # b/c.2021-02-24T16:19:20.276491.
→˓tar.bz2
sh.backup("b/c", ext=".tar.xz") # b/c.2021-02-24T16:19:20.276491.
→˓tar.xz
sh.backup("b/c", ext=".zip") # b/c.2021-02-24T16:19:20.276491.
→˓zip

from functools import partial
import itertools

counter = itertools.count(1)
backup = partial(sh.backup, namer=lambda src: f"{src.name}-{next(counter)}~")
backup("test.txt") # test.txt-1~
backup("test.txt") # test.txt-2~
backup("test.txt") # test.txt-3~

9

shelmet Documentation, Release 0.6.0

Archive files:

Create tar, tar-gz, tar-bz2, tar-xz, or zip archives.
sh.archive("archive.tar.gz", "/path/to/foo", "/path/to/bar")

Archive type is inferred from extension in filename but can be explicitly set.
sh.archive("archive", "path", ext=".tbz")

Files can be filtered with ls, lsfiles, lsdirs, walk, walkfiles, and walkdirs
→˓functions.
sh.archive(

"archive.tgz",
sh.walk("path", include="*.py"),
sh.walk("other/path", exclude="*.log"),

)

Archive paths can be customized with root and repath arguments.
root changes the base path for archive members.
sh.archive("archive.txz", "/a/b/c/1", "/a/b/d/2", root="/a/b")
-> archive members will be "c/1/*" and "d/2/*"
-> without root, they would be "b/c/1/*" and "b/d/2/*"

repath renames paths.
sh.archive("archive.zip", "/a/b/c", "/a/b/d", repath={"/a/b/c": "foo/bar"})
-> archive members: "foo/bar/*" and "b/d/*"

repath also works with ls* and walk* by matching on the base path.
sh.archive(

"log-dump.taz",
sh.walk("path/to/logs", include="*.log*"),
repath={"path/to/logs": "logs"},

)

Get list of archive contents:

Get list of archive contents as PurePath objects.
listing = sh.lsarchive("archive.tgz")

Use an explicit extension when archive doesn't have one but is supported.
listing = sh.lsarchive("archive", ext=".tgz")

Unarchive tar and zip based archives:

Extract tar, tar-gz, tar-bz2, tar-xz, or zip archives to directory.
sh.unarchive("archive.tgz", "out/dir")

Potentially unsafe archives will raise an exception if the extraction path falls
→˓outside
the destination, e.g., when the archive contains absolute paths.
try:

sh.unarchive("unsafe-archive.tz2", "out")
except sh.ArchiveError:

pass

But if an archive can be trusted...
sh.unarchive("unsafe-archive.tz2", "out")

Write to a new file atomically where content is written to a temporary file and then moved once finished:

10 Chapter 3. Quickstart

shelmet Documentation, Release 0.6.0

import os

with sh.atomicfile("path/to/atomic.txt") as fp:
Writes are sent to a temporary file in the same directory as the destination.
print(fp.name) # will be something like "path/to/.atomic.txt_XZKVqrlk.tmp"
fp.write("some text")
fp.write("some more text")

File doesn't exist yet.
assert not os.path.exists("path/to/atomic.txt")

Exiting context manager will result in the temporary file being atomically moved to
destination. This will also result in a lower-level fsync on the destination file
→˓and
directory.
assert os.path.exists("path/to/atomic.txt")

File mode, sync skipping, and overwrite flag can be specified to change the default
behavior which is...
with sh.atomicfile("file.txt", "w", skip_sync=False, overwrite=True) as fp:

pass

Additional parameters to open() can be passed as keyword arguments.
with sh.atomicfile("file.txt", "w", **open_kwargs) as fp:

pass

To writie to a file atomically without a context manager
sh.write("file.txt", "content", atomic=True)

Create a new directory atomically where its contents are written to a temporary directory and then moved once finished:

with sh.atomicdir("path/to/atomic_dir") as atomic_dir:
Yielded path is temporary directory within the same parent directory as the

→˓destination.
path will be something like "path/to/.atomic_dir_QGLDfPwz_tmp"
some_file = atomic_dir / "file.txt"

file written to "path/to/.atomic_dir_QGLDfPwz_tmp/file.txt"
some_file.write_text("contents")

some_dir = atomic_dir / "dir"
some_dir.mkdir() # directory created at "path/to/.atomic_dir_QGLDfPwz_tmp/dir/"

Directory doesn't exist yet.
assert not os.path.exists("path/to/atomic_dir")

Exiting context manager will atomically move the the temporary directory to the
→˓destination.
assert os.path.exists("path/to/atomic_dir")

Sync skipping and overwrite flag can be specified to change the default behavior
→˓which is...
with sh.atomicdir("atomic_dir", skip_sync=False, overwrite=True) as atomic_dir:

pass

Temporarily change environment variables:

11

shelmet Documentation, Release 0.6.0

Extend existing environment.
with sh.environ({"KEY1": "val1", "KEY2": "val2"}) as new_environ:

Do something while environment changed.
Environment variables include all previous ones and {"KEY1": "val1", "KEY2":

→˓"val2"}.
pass

Replace the entire environment with a new one.
with sh.environ({"KEY": "val"}, replace=True):

Environment variables are replaced and are now just {"KEY": "val"}.
pass

For more details, please see the full documentation at https://shelmet.readthedocs.io.

12 Chapter 3. Quickstart

https://shelmet.readthedocs.io

CHAPTER

FOUR

GUIDE

4.1 Installation

shelmet requires Python >= 3.6.

To install from PyPI:

pip install shelmet

4.2 API Reference

The shelmet package.

A shell power-up for working with the file system and running subprocess commands.

Exceptions:

ArchiveError General archive error.
UnsafeArchiveError Unsafe archive exception raised when an untrusted

archive would extract contents outside of the destination
directory.

Classes:

Command A system command that can be executed multiple times
and used to create piped commands.

Ls Directory listing iterable that iterates over its contents
and returns them as Path objects.

Functions:

archive Create an archive from the given source paths.
atomicdir Context-manager that is used to atomically create a di-

rectory and its contents.
continues on next page

13

https://pypi.org/project/shelmet/

shelmet Documentation, Release 0.6.0

Table 3 – continued from previous page
atomicfile Context-manager similar to open() that is used to per-

form an atomic file write operation by first writing to a
temporary location in the same directory as the destina-
tion and then renaming the file to the destination after
all write operations are finished.

backup Create a backup of a file or directory as either a direct
copy or an archive file.

cd Context manager that changes the working directory on
enter and restores it on exit.

chmod Change file or directory permissions using numeric or
symbolic modes.

chown Change ownership of file or directory to user and/or
group.

cmd Factory that returns an instance of Command initialized
with the given arguments.

cp Copy file or directory to destination.
cwd Return current working directory as Path object.
dirsync Force sync on directory.
environ Context manager that updates environment variables

with env on enter and restores the original environment
on exit.

fsync Force write of file to disk.
getdirsize Return total size of directory’s contents.
homedir Return current user’s home directory as Path object.
ls Return iterable that lists directory contents as Path ob-

jects.
lsarchive Return list of member paths contained in archive file.
lsdirs Return iterable that only lists directories in directory as

Path objects.
lsfiles Return iterable that only lists files in directory as Path

objects.
mkdir Recursively create directories in paths along with any

parent directories that don’t already exists.
mv Move source file or directory to destination.
read Return contents of file.
readbytes Return binary contents of file.
readchunks Yield contents of file as chunks.
readlines Yield each line of a file.
readtext Return text contents of file.
reljoin Like os.path.join except that all paths are treated

as relative to the previous one so that an absolute path
in the middle will extend the existing path instead of
becoming the new root path.

rm Delete files and directories.
rmdir Delete directories.
rmfile Delete files.
run Convenience function-wrapper around Command.

run().
touch Touch files.
umask Context manager that sets the umask to mask and re-

stores it on exit.
continues on next page

14 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

Table 3 – continued from previous page
unarchive Extract an archive to the given destination path.
walk Return iterable that recursively lists all directory con-

tents as Path objects.
walkdirs Return iterable that recursively lists only directories in

directory as Path objects.
walkfiles Return iterable that recursively lists only files in direc-

tory as Path objects.
write Write contents to file.
writebytes Write binary contents to file.
writelines Write lines to file.
writetext Write text contents to file.

exception shelmet.ArchiveError(*args, orig_exc=None)
General archive error.

class shelmet.Command(*args, stdin=None, input=None, stdout=- 1, stderr=- 1, capture_output=True,
combine_output=False, cwd=None, timeout=None, check=True, encod-
ing=None, errors=None, text=True, env=None, replace_env=False, par-
ent=None, **popen_kwargs)

A system command that can be executed multiple times and used to create piped commands.

Executing the command is done using run() which is a wrapper around subprocess.run. However, the
default arguments for a Command enable different default behavior than subprocess.run:

• Output is captured

• Text-mode is enabled

• Environment variables extend os.environ instead of replacing them.

• Exceptions are raised by default when the completed process returns a non-zero exit code.

• System command arguments can be passed as a var-args instead of just a list.

To disable output capture completely, use capture_output=False. To disable output capture for just one
of them, set stdout or stderr to None.

To disable os.environ extension, use replace_env=True.

To disable exception raising, use check=False.

Therefore, to use the default behavior of subprocess.run, set the following keyword arguments:

ls = Command(["ls", "-la"], capture_output=False, text=False, check=False,
→˓replace_env=True)
ls.run()

Parameters

• *args – System command arguments to execute. If None is given as an argument value,
it will be discarded.

• stdin (Union[int, IO[Any], None]) – Specify the executed command’s standard input.

• input (Union[str, bytes, None]) – If given it will be passed to the underlying process
as stdin. When used, stdin will be set to PIPE automatically and cannot be used. The value
will be encoded or decoded automatically if it does not match the expected type based on
whether text-mode is enabled or not.

4.2. API Reference 15

shelmet Documentation, Release 0.6.0

• stdout (Union[int, IO[Any], None]) – Specify the executed command’s standard out-
put.

• stderr (Union[int, IO[Any], None]) – Specify the executed command’s standard er-
ror.

• capture_output (bool) – Whether to capture stdout and stderr and include in the re-
turned completed process result.

• combine_output (bool) – Whether to combine stdout and stderr. Equilvalent to setting
stderr=subprocess.STDOUT.

• cwd (Union[str, Path, None]) – Set the current working directory when executing the
command.

• timeout (Union[float, int, None]) – If the timeout expires, the child process will be
killed and waited for.

• check (bool) – Whether to check return code and raise if it is non-zero.

• encoding (Optional[str]) – Set encoding to use for text-mode.

• errors (Optional[str]) – Specify how encoding and decoding errors should be han-
dled. Must be one of “strict”, “ignore”, “replace”, “backslashreplace”, “xmlcharrefreplace”,
“namereplace”

• text (bool) – Set text-mode.

• env (Optional[dict]) – Environment variables for the new process. Unlike in
subprocess.run, the default behavior is to extend the existing environment. Use
replace_env=True to replace the environment variables instead.

• replace_env (bool) – Whether to replace the current environment when env given.

Keyword Arguments

• other keyword arguments are passed to subprocess.run which
subsequently passes them (All) –

• subprocess.Popen. (to) –

Methods:

after Return a new command that will be executed after
this command regardless of this command’s return
code.

and_ Return a new command that will be AND’d with this
command.

or_ Return a new command that will be OR’d with this
command.

pipe Return a new command whose input will be piped
from the output of this command.

run Wrapper around subprocess.run that uses this
class’ arguments as defaults.

Attributes:

parents Return list of parent Command objects that pipe out-
put into this command.

continues on next page

16 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

Table 5 – continued from previous page
shell_cmd Return string version of command that would be

used when executing from a shell.

after(*args, stdin=None, input=None, stdout=- 1, stderr=- 1, capture_output=True, com-
bine_output=False, cwd=None, timeout=None, check=True, encoding=None, errors=None,
text=True, env=None, replace_env=False, **popen_kwargs)

Return a new command that will be executed after this command regardless of this command’s return code.

This is like running “<this-command> ; <next-command>”.

Return type Command

and_(*args, stdin=None, input=None, stdout=- 1, stderr=- 1, capture_output=True, com-
bine_output=False, cwd=None, timeout=None, check=True, encoding=None, errors=None,
text=True, env=None, replace_env=False, **popen_kwargs)

Return a new command that will be AND’d with this command.

This is like running “<this-command> && <next-command>”.

Return type Command

or_(*args, stdin=None, input=None, stdout=- 1, stderr=- 1, capture_output=True, com-
bine_output=False, cwd=None, timeout=None, check=True, encoding=None, errors=None,
text=True, env=None, replace_env=False, **popen_kwargs)
Return a new command that will be OR’d with this command.

This is like running “<this-command> || <next-command>”.

Return type Command

property parents
Return list of parent Command objects that pipe output into this command.

Return type List[ChainCommand]

pipe(*args, stdin=None, input=None, stdout=- 1, stderr=- 1, capture_output=True, com-
bine_output=False, cwd=None, timeout=None, check=True, encoding=None, errors=None,
text=True, env=None, replace_env=False, **popen_kwargs)

Return a new command whose input will be piped from the output of this command.

This is like running “<this-command> | <next-command>”.

Return type Command

run(*extra_args, **override_kwargs)
Wrapper around subprocess.run that uses this class’ arguments as defaults.

To add additional command args to args, pass them as var-args.

To override default keyword arguments, pass them as keyword-args.

If parent is set (e.g. if this command was created with pipe(), after(), and_(), or or_()), then
the parent command will be called first and then chained with this command.

Parameters

• *extra_args – Extend args with extra command arguments.

• **override_kwargs – Override this command’s keyword arguments.

Return type CompletedProcess

property shell_cmd
Return string version of command that would be used when executing from a shell.

4.2. API Reference 17

shelmet Documentation, Release 0.6.0

Return type str

class shelmet.Ls(path='.', *, recursive=False, only_files=False, only_dirs=False, include=None, ex-
clude=None)

Directory listing iterable that iterates over its contents and returns them as Path objects.

Parameters

• path (Union[str, Path]) – Directory to list.

• recursive (bool) – Whether to recurse into subdirectories. Defaults to False.

• only_files (bool) – Limit results to files only. Mutually exclusive with only_dirs.

• only_dirs (bool) – Limit results to directories only. Mutually exclusive with
only_files.

• include (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – In-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is included if any of the filters return True and path
matches only_files or only_dirs (if set). If path is a directory and is not included,
its contents are still eligible for inclusion if they match one of the include filters.

• exclude (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – Ex-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is not yielded if any of the filters return True. If the
path is a directory and is excluded, then all of its contents will be excluded.

exception shelmet.UnsafeArchiveError(*args, orig_exc=None)
Unsafe archive exception raised when an untrusted archive would extract contents outside of the destination
directory.

shelmet.archive(file, *paths, root=None, repath=None, ext='')
Create an archive from the given source paths.

The source paths can be relative or absolute but the path names inside the archive will always be relative.
By default, the paths within the archive will be determined by taking the common path of all the sources and
removing it from each source path so that the archive paths are all relative to the shared parent path of all sources.
If root is given, it will be used in place of the dynamic common path determination, but it must be a parent path
common to all sources.

The archive member names of the source paths can be customized using the repath argument. The repath
argument is a mapping of source paths to their custom archive name. If a source path is given as relative, then its
repath key must also be relative. If a source path is given as absolute, then its repath key must also be absolute.
The repath keys/values should be either strings or Path objects but they don’t have to match the corresponding
source path. Both the keys and values will have their path separators normalized.

Archives can be created in either the tar or zip format. A tar archive can use the same compressions that are
available from tarfile which are gzipped, bzip2, and lzma. A zip archive will use deflate compression if the
zlib library is available. Otherwise, it will fallback to being uncompressed.

The archive format is interfered from the file extension of file by default, but can be overridden using the ext
argument (e.g. ext=".tgz" for a gzipped tarball).

The supported tar-based extensions are:

• .tar

• .tar.gz, .tgz, .taz

• .tar.bz2, .tb2, .tbz, .tbz2, .tz2

18 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

• .tar.xz, .txz

The supported zip-based extensions are:

• .zip,

• .egg, .jar

• .docx, pptx, xlsx

• .odg, .odp, .ods, .odt

Parameters

• file (Union[str, Path]) – Archive file path to create.

• *paths – Source paths (files and/or directories) to archive. Directories will be recursively
added.

• root (Union[str, Path, None]) – Archive member paths will be relative to this root di-
rectory. The root path must be a parent directory of all source paths, otherwise, an exception
will be raised.

• repath (Union[str, Mapping[Union[str, Path], Union[str, Path]], None]) –
A mapping of source paths to archive names that will rename the source path to the mapped
value within the archive. A string representing the archive member name can only be used
when a single source path is being added to the archive.

• ext (str) – Specify the archive format to use by referencing the corresponding file exten-
sion (starting with a leading “.”) instead of interfering the format from the file extension.

Return type None

shelmet.atomicdir(dir, *, skip_sync=False, overwrite=True)
Context-manager that is used to atomically create a directory and its contents.

This context-manager will create a temporary directory in the same directory as the destination and yield the
temporary directory as a pathblib.Path object. All atomic file system updates to the directory should then
be done within the context-manager. Once the context-manager exits, the temporary directory will be passed to
dirsync() (unless skip_sync=True) and then moved to the destination followed by dirsync() on the
parent directory. If the destination directory exists, it will be overwritten unless overwrite=False.

Parameters

• dir (Union[str, Path]) – Directory path to create.

• skip_sync (bool) – Whether to skip calling dirsync() on the directory. Skipping
this can help with performance at the cost of durability.

• overwrite (bool) – Whether to raise an exception if the destination exists once the
directory is to be moved to its destination.

Return type Iterator[Path]

shelmet.atomicfile(file, mode='w', *, skip_sync=False, overwrite=True, **open_kwargs)
Context-manager similar to open() that is used to perform an atomic file write operation by first writing to a
temporary location in the same directory as the destination and then renaming the file to the destination after all
write operations are finished.

This context-manager will open a temporary file for writing in the same directory as the destination and yield
a file object just like open() does. All file operations while the context-manager is opened will be performed
on the temporary file. Once the context-manager exits, the temporary file will flushed and fsync’d (unless
skip_sync=True). If the destination file exists, it will be overwritten unless overwrite=False.

4.2. API Reference 19

shelmet Documentation, Release 0.6.0

Parameters

• file (Union[str, Path]) – File path to write to.

• mode (str) – File open mode.

• skip_sync (bool) – Whether to skip calling fsync on file. Skipping this can help with
performance at the cost of durability.

• overwrite (bool) – Whether to raise an exception if the destination file exists once the
file is to be written to its destination.

• **open_kwargs – Additional keyword arguments to open() when creating the tempo-
rary write file.

Return type Iterator[IO]

shelmet.backup(src, *, timestamp='%Y-%m-%dT%H:%M:%S.%f%z', utc=False, epoch=False, prefix='',
suffix='~', ext=None, hidden=False, overwrite=False, dir=None, namer=None)

Create a backup of a file or directory as either a direct copy or an archive file.

The format of the backup name is {prefix}{src}.{timestamp}{suffix|ext}.

By default, the backup will be created in the same parent directory as the source and be named like "src.
YYYY-MM-DDThh:mm:ss.ffffff~", where the timestamp is the current local time.

If utc is True, then the timestamp will be in the UTC timezone.

If epoch is True, then the timestamp will be the Unix time as returned by time.time() instead of the
strftime format.

If ext is given, the backup created will be an archive file. The extension must be one that archive() supports.
The suffix value will be ignored and ext used in its place.

If hidden is True, then a "." will be prepended to the prefix. It won’t be added if prefix already starts with a
".".

If dir is given, it will be used as the parent directory of the backup instead of the source’s parent directory.

If overwrite is True and the backup location already exists, then it will be overwritten.

If namer is given, it will be called with namer(src) and it should return the full destination path of the
backup. All other arguments to this function will be ignored except for overwrite.

Parameters

• src (Union[str, Path]) – Source file or directory to backup.

• timestamp (Optional[str]) – Timestamp strftime-format string or None to exclude
timestamp from backup name. Defaults to ISO-8601 format.

• utc (bool) – Whether to use UTC time instead of local time for the timestamp.

• epoch (bool) – Whether to use the Unix time for the timestamp instead of the strftime
format in timestamp.

• prefix (str) – Name prefix to prepend to the backup.

• suffix (str) – Name suffix to append to the backup.

• ext (Optional[str]) – Create an archive of src as the backup instead of a direct copy
using the given archive extension. The extension must be supported by archive() or an
exception will be raised. When given the suffix value is ignored and ext will be used in its
place.

• hidden (bool) – Whether to ensure that the backup location is a hidden file or directory.

20 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

• overwrite (bool) – Whether to overwrite an existing file or directory when backing up.

• dir (Union[str, Path, None]) – Set the parent directory of the backup. Defaults to
None which will use the parent directory of the src.

• namer (Optional[Callable[[Path], Union[str, Path]]]) – Naming function that
can be used to return the full path of the backup location. It will be passed the src value as
a pathlib.Path object as a positional argument. It should return the destination path of
the backup as a str or pathlib.Path.

Return type Path

Returns Backup location.

shelmet.cd(path)
Context manager that changes the working directory on enter and restores it on exit.

Parameters path (Union[str, Path]) – Directory to change to.

Return type Iterator[None]

shelmet.chmod(path, mode, *, follow_symlinks=True, recursive=False)
Change file or directory permissions using numeric or symbolic modes.

The mode can either be an integer, an octal number (e.g. 0o600), an octal string (e.g. "600"), or a symbolic
permissions string (e.g. "u+rw,g=r,o-rwx").

The symbolic permissions string format is similar to what is accepted by the UNIX command chmod:

• Symbolic format: [ugoa...][-+=][rwxstugo...][,...]

• [ugoa...]: Optional zero or more characters that set the user class parameter.

– u: user

– g: group

– o: other

– a: all

– Defaults to a when none given

• [-+=]: Required operation that modifies the permissions.

– -: removes the given permissions

– +: adds the given permissions

– =: sets the given permissions to what was specified

– If = is used without permissions, then the user class will have all of its permissions removed

• [rwxstugo...]: Permissions to modify for the given user classes.

– r: Read

– w: Write

– x: Execute

– s: User or Group ID bit

– t: Sticky bit

– u: User permission bits of the original path mode

– g: Group permission bits of the original path mode

4.2. API Reference 21

shelmet Documentation, Release 0.6.0

– o: Other permission bits of the original path mode

• Multiple permission clauses are separated with ,.

Examples:

Set permissions to 600 using octal number.
chmod(path, 0o600)

Set permissions to 600 using octal string.
chmod(path, "600")

Set user to read-write, group to read, and remove read-write-execute from other
chmod(path, "u=rw,g=r,o-rwx")

Set user, group, and other to read-write
chmod(path, "a=rw")

Add execute permission for user, group, and other
chmod(path, "+x")

Add user id bit, group id bit, and set sticky bit
chmod(path, "u+s,g+s,+t")

Set group permission to same as user
chmod(path, "g=u")

Parameters

• path (Union[str, Path, int]) – File, directory, or file-descriptor.

• mode (Union[str, int]) – Permission mode to set.

• follow_symlinks (bool) – Whether to follow symlinks.

• recursive (bool) – Whether to recursively apply permissions to subdirectories and their
files.

Return type None

shelmet.chown(path, user=None, group=None, *, follow_symlinks=True, recursive=False)
Change ownership of file or directory to user and/or group.

User and group can be a string name or a numeric id. Leave as None to not change the respective user or group
ownership.

Parameters

• path (Union[str, Path, int]) – File, directory, or file-descriptor.

• user (Union[str, int, None]) – User name or uid to set as owner. Use None or -1 to
not change.

• group (Union[str, int, None]) – Group name or gid to set as owner. Use None or -1
to not change.

• follow_symlinks (bool) – Whether to follow symlinks.

• recursive (bool) – Whether to recursively apply ownership to subdirectories and their
files.

Return type None

22 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

shelmet.cmd(*args, stdin=None, input=None, stdout=- 1, stderr=- 1, capture_output=True, com-
bine_output=False, cwd=None, timeout=None, check=True, encoding=None, errors=None,
text=True, env=None, replace_env=False, **popen_kwargs)

Factory that returns an instance of Command initialized with the given arguments.

See also:

Command for description of arguments.

Return type Command

shelmet.cp(src, dst, *, follow_symlinks=True)
Copy file or directory to destination.

Files are copied atomically by first copying to a temporary file in the same target directory and then renaming
the temporary file to its actual filename.

Parameters

• src (Union[str, Path]) – Source file or directory to copy from.

• dst (Union[str, Path]) – Destination file or directory to copy to.

• follow_symlinks (bool) – When true (the default), symlinks in the source will be
dereferenced into the destination. When false, symlinks in the source will be preserved as
symlinks in the destination.

Return type None

shelmet.cwd()
Return current working directory as Path object.

Return type Path

shelmet.dirsync(path)
Force sync on directory.

Parameters path (Union[str, Path]) – Directory to sync.

Return type None

shelmet.environ(env=None, *, replace=False)
Context manager that updates environment variables with env on enter and restores the original environment on
exit.

Parameters

• env (Optional[Dict[str, str]]) – Environment variables to set.

• replace (bool) – Whether to clear existing environment variables before setting new
ones. This fully replaces the existing environment variables so that only env are set.

Yields The current environment variables.

Return type Iterator[Dict[str, str]]

shelmet.fsync(fd)
Force write of file to disk.

The file descriptor will have os.fsync() (or fcntl.fcntl() with fcntl.F_FULLFSYNC if available)
called on it. If a file object is passed it, then it will first be flushed before synced.

Parameters fd (Union[IO, int]) – Either file descriptor integer or file object.

Return type None

4.2. API Reference 23

shelmet Documentation, Release 0.6.0

shelmet.getdirsize(path, pattern='**/*')
Return total size of directory’s contents.

Parameters

• path (Union[str, Path]) – Directory to calculate total size of.

• pattern (str) – Only count files if they match this glob-pattern.

Return type int

Returns Total size of directory in bytes.

shelmet.homedir()
Return current user’s home directory as Path object.

shelmet.ls(path='.', *, recursive=False, only_files=False, only_dirs=False, include=None, ex-
clude=None)

Return iterable that lists directory contents as Path objects.

Parameters

• path (Union[str, Path]) – Directory to list.

• recursive (bool) – Whether to recurse into subdirectories. Defaults to False.

• only_files (bool) – Limit results to files only. Mutually exclusive with only_dirs.

• only_dirs (bool) – Limit results to directories only. Mutually exclusive with
only_files.

• include (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – In-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is included if any of the filters return True and path
matches only_files or only_dirs (if set). If path is a directory and is not included,
its contents are still eligible for inclusion if they match one of the include filters.

• exclude (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – Ex-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is not yielded if any of the filters return True. If the
path is a directory and is excluded, then all of its contents will be excluded.

Return type Ls

shelmet.lsarchive(file, ext='')
Return list of member paths contained in archive file.

Parameters

• file (Union[str, Path]) – Archive file to list.

• ext (str) – Specify the archive format to use by referencing the corresponding file exten-
sion (starting with a leading “.”) instead of interfering the format from the file extension.

Return type List[PurePath]

shelmet.lsdirs(path='.', *, include=None, exclude=None)
Return iterable that only lists directories in directory as Path objects.

See also:

This function is not recursive and will only yield the top-level contents of a directory. Use walkdirs() to
recursively yield all directories from a directory.

24 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

Parameters

• path (Union[str, Path]) – Directory to list.

• include (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – In-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is included if any of the filters return True. If path is a
directory and is not included, its contents are still eligible for inclusion if they match one of
the include filters.

• exclude (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – Ex-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is not yielded if any of the filters return True. If the
path is a directory and is excluded, then all of its contents will be excluded.

Return type Ls

shelmet.lsfiles(path='.', *, include=None, exclude=None)
Return iterable that only lists files in directory as Path objects.

See also:

This function is not recursive and will only yield the top-level contents of a directory. Use walkfiles() to
recursively yield all files from a directory.

Parameters

• path (Union[str, Path]) – Directory to list.

• include (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – In-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is included if any of the filters return True. If path is a
directory and is not included, its contents are still eligible for inclusion if they match one of
the include filters.

• exclude (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – Ex-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is not yielded if any of the filters return True. If the
path is a directory and is excluded, then all of its contents will be excluded.

Return type Ls

shelmet.mkdir(*paths, mode=511, exist_ok=True)
Recursively create directories in paths along with any parent directories that don’t already exists.

This is like the Unix command mkdir -p <path1> <path2>

Parameters

• *paths – Directories to create.

• mode (int) – Access mode for directories.

• exist_ok (bool) – Whether it’s ok or not if the path already exists. When True, a
FileExistsError will be raised.

Return type None

4.2. API Reference 25

shelmet Documentation, Release 0.6.0

shelmet.mv(src, dst)
Move source file or directory to destination.

The move semantics are as follows:

• If src and dst are files, then src will be renamed to dst and overwrite dst if it exists.

• If src is a file and dst is a directory, then src will be moved under dst.

• If src is a directory and dst does not exist, then src will be renamed to dst and any parent directories that
don’t exist in the dst path will be created.

• If src is a directory and dst is a directory and the src’s basename does not exist under dst or if it is an empty
directory, then src will be moved under dst.

• If src is directory and dst is a directory and the src’s basename is a non-empty directory under dst, then an
OSError will be raised.

• If src and dst reference two difference file-systems, then src will be copied to dst using cp() and then
deleted at src.

Parameters

• src (Union[str, Path]) – Source file or directory to move.

• dst (Union[str, Path]) – Destination file or directory to move source to.

Return type None

shelmet.read(file, mode='r', **open_kwargs)
Return contents of file.

Parameters

• file (Union[str, Path]) – File to read.

• mode (str) – File open mode.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type Union[str, bytes]

shelmet.readbytes(file, **open_kwargs)
Return binary contents of file.

Equivalent to calling read() with mode="rb".

Parameters

• file (Union[str, Path]) – File to read.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type bytes

shelmet.readchunks(file, mode='r', *, size=8192, sep=None, **open_kwargs)
Yield contents of file as chunks.

If separator, sep, is not given, chunks will be yielded by size.

If separator, sep, is given, chunks will be yielded from as if from contents.split(sep). The size argument
will still be used for each file read operation, but the contents will be buffered until a separator is encountered.

Parameters

• file (Union[str, Path]) – File to read.

26 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

• mode (str) – File open mode.

• size (int) – Size of chunks to read from file at a time and chunk size to yield when sep
not given.

• sep (Union[str, bytes, None]) – Separator to split chunks by in lieu of splitting by
size.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type Generator[Union[str, bytes], None, None]

shelmet.readlines(file, mode='r', *, limit=- 1, **open_kwargs)
Yield each line of a file.

Note: Line-endings are included in the yielded values.

Parameters

• file (Union[str, Path]) – File to read.

• mode (str) – File open mode.

• limit (int) – Maximum length of each line to yield. For example, limit=10 will yield
the first 10 characters of each line.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type Generator[Union[str, bytes], None, None]

shelmet.readtext(file, **open_kwargs)
Return text contents of file.

Equivalent to calling read() with mode="r" (the default behavior of read()).

Parameters

• file (Union[str, Path]) – File to read.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type str

shelmet.reljoin(*paths)
Like os.path.join except that all paths are treated as relative to the previous one so that an absolute path in
the middle will extend the existing path instead of becoming the new root path.

Parameters *paths – Paths to join together.

Return type str

shelmet.rm(*paths)
Delete files and directories.

Note: Deleting non-existent files or directories does not raise an error.

Warning: This function is like $ rm -rf so be careful. To limit the scope of the removal to just files or
just directories, use rmfile() or rmdir() respectively.

4.2. API Reference 27

shelmet Documentation, Release 0.6.0

Parameters *paths – Files and/or directories to delete.

Return type None

shelmet.rmdir(*dirs)
Delete directories.

Note: Deleting non-existent directories does not raise an error.

Warning: This function is like calling $ rm -rf on a directory. To limit the scope of the removal to just
files, use rmfile().

Parameters *dirs – Directories to delete.

Raises NotADirectoryError – When given path is not a directory.

Return type None

shelmet.rmfile(*files)
Delete files.

Note: Deleting non-existent files does not raise an error.

Parameters *files – Files to delete.

Raises IsADirectoryError – When given path is a directory.

Return type None

shelmet.run(*args, stdin=None, input=None, stdout=- 1, stderr=- 1, capture_output=True, com-
bine_output=False, cwd=None, timeout=None, check=True, encoding=None, errors=None,
text=True, env=None, replace_env=False, **popen_kwargs)

Convenience function-wrapper around Command.run().

Using this function is equivalent to:

result = sh.cmd(*args, **kwargs).run()

See also:

Command for description of arguments.

Return type CompletedProcess

shelmet.touch(*paths)
Touch files.

Parameters *paths – File paths to create.

Return type None

shelmet.umask(mask=0)
Context manager that sets the umask to mask and restores it on exit.

Parameters mask (int) – Numeric umask to set.

28 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

Yields None

Return type Iterator[None]

shelmet.unarchive(file, dst='.', *, ext='', trusted=False)
Extract an archive to the given destination path.

If the archive contains any paths that would be extracted outside the destination path, an ArchiveError will
be raised to prevent untrusted archives from extracting contents to locations that may pose a security risk. To
allow a trusted archive to extract contents outside the destination, use the argument trusted=True.

Archives can be extracted from either zip or tar formats with compression. The tar compressions available are
the same as what is supported by tarfile which are gzipped, bzip2, and lzma.

The archive format is interfered from the file extension of file by default, but can be overridden using the ext
argument (e.g. ext=".tgz" for a gzipped tarball).

The supported tar extensions are:

• .tar

• .tar.gz, .tgz, .taz

• .tar.bz2, .tb2, .tbz, .tbz2, .tz2

• .tar.xz, .txz

• .zip,

• .egg, .jar

• .docx, pptx, xlsx

• .odg, .odp, .ods, .odt

Parameters

• file (Union[str, Path]) – Archive file to unarchive.

• dst (Union[str, Path]) – Destination directory to unarchive contents to.

• ext (str) – Specify the archive format to use by referencing the corresponding file exten-
sion (starting with a leading “.”) instead of interfering the format from the file extension.

• trusted (bool) – Whether the archive is safe and can be trusted to allow it to extract
contents outside of the destination path. Only enable this for archives that have been verified
as originating from a trusted source.

Return type None

shelmet.walk(path='.', *, only_files=False, only_dirs=False, include=None, exclude=None)
Return iterable that recursively lists all directory contents as Path objects.

See also:

This function is recursive and will list all contents of a directory. Use ls() to list only the top-level contents of
a directory.

Parameters

• path (Union[str, Path]) – Directory to walk.

• only_files (bool) – Limit results to files only. Mutually exclusive with only_dirs.

• only_dirs (bool) – Limit results to directories only. Mutually exclusive with
only_files.

4.2. API Reference 29

shelmet Documentation, Release 0.6.0

• include (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – In-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is included if any of the filters return True and path
matches only_files or only_dirs (if set). If path is a directory and is not included,
its contents are still eligible for inclusion if they match one of the include filters.

• exclude (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – Ex-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is not yielded if any of the filters return True. If the
path is a directory and is excluded, then all of its contents will be excluded.

Return type Ls

shelmet.walkdirs(path='.', *, include=None, exclude=None)
Return iterable that recursively lists only directories in directory as Path objects.

See also:

This function is recursive and will list all directories in a directory. Use lsfiles() to list only the top-level
directories in a directory.

Parameters

• path (Union[str, Path]) – Directory to walk.

• include (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – In-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is included if any of the filters return True. If path is a
directory and is not included, its contents are still eligible for inclusion if they match one of
the include filters.

• exclude (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – Ex-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is not yielded if any of the filters return True. If the
path is a directory and is excluded, then all of its contents will be excluded.

Return type Ls

shelmet.walkfiles(path='.', *, include=None, exclude=None)
Return iterable that recursively lists only files in directory as Path objects.

See also:

This function is recursive and will list all files in a directory. Use lsfiles() to list only the top-level files in
a directory.

Parameters

• path (Union[str, Path]) – Directory to walk.

• include (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – In-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is included if any of the filters return True. If path is a
directory and is not included, its contents are still eligible for inclusion if they match one of
the include filters.

30 Chapter 4. Guide

shelmet Documentation, Release 0.6.0

• exclude (Union[str, Pattern, Callable[[Path], bool],
Iterable[Union[str, Pattern, Callable[[Path], bool]]], None]) – Ex-
clude paths by filtering on a glob-pattern string, compiled regex, callable, or iterable
containing any of those types. Path is not yielded if any of the filters return True. If the
path is a directory and is excluded, then all of its contents will be excluded.

Return type Ls

shelmet.write(file, contents, mode='w', *, atomic=False, **open_kwargs)
Write contents to file.

Parameters

• file (Union[str, Path]) – File to write.

• contents (Union[str, bytes]) – Contents to write.

• mode (str) – File open mode.

• atomic (bool) – Whether to write the file to a temporary location in the same directory
before moving it to the destination.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type None

shelmet.writebytes(file, contents, mode='wb', *, atomic=False, **open_kwargs)
Write binary contents to file.

Parameters

• file (Union[str, Path]) – File to write.

• contents (bytes) – Contents to write.

• mode (str) – File open mode.

• atomic (bool) – Whether to write the file to a temporary location in the same directory
before moving it to the destination.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type None

shelmet.writelines(file, items, mode='w', *, ending=None, atomic=False, **open_kwargs)
Write lines to file.

Parameters

• file (Union[str, Path]) – File to write.

• items (Union[Iterable[str], Iterable[bytes]]) – Items to write.

• mode (str) – File open mode.

• ending (Union[str, bytes, None]) – Line ending to use. Defaults to newline.

• atomic (bool) – Whether to write the file to a temporary location in the same directory
before moving it to the destination.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type None

shelmet.writetext(file, contents, mode='w', *, atomic=False, **open_kwargs)
Write text contents to file.

4.2. API Reference 31

shelmet Documentation, Release 0.6.0

Parameters

• file (Union[str, Path]) – File to write.

• contents (str) – Contents to write.

• mode (str) – File open mode.

• atomic (bool) – Whether to write the file to a temporary location in the same directory
before moving it to the destination.

• **open_kwargs – Additional keyword arguments to pass to open.

Return type None

4.3 Developer Guide

This guide provides an overview of the tooling this project uses and how to execute developer workflows using the
developer CLI.

4.3.1 Python Environments

This Python project is tested against different Python versions. For local development, it is a good idea to have those
versions installed so that tests can be run against each.

There are libraries that can help with this. Which tools to use is largely a matter of preference, but below are a few
recommendations.

For managing multiple Python versions:

• pyenv

• OS package manager (e.g. apt, yum, homebrew, etc)

• Build from source

For managing Python virtualenvs:

• pyenv-virtualenv

• pew

• python-venv

4.3.2 Tooling

The following tools are used by this project:

Tool Description Configuration
black Code formatter pyproject.toml
isort Import statement formatter setup.cfg
docformatter Docstring formatter setup.cfg
flake8 Code linter setup.cfg
pylint Code linter pylintrc
pytest Test framework setup.cfg
tox Test environment manager tox.ini
invoke CLI task execution library tasks.py

32 Chapter 4. Guide

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv-virtualenv
https://github.com/berdario/pew
https://docs.python.org/3/library/venv.html
https://black.readthedocs.io
https://pycqa.github.io/isort/
https://github.com/myint/docformatter
https://flake8.pycqa.org
https://www.pylint.org/
https://docs.pytest.org
https://tox.readthedocs.io
http://docs.pyinvoke.org

shelmet Documentation, Release 0.6.0

4.3.3 Workflows

The following workflows use developer CLI commands via invoke and are defined in tasks.py.

Autoformat Code

To run all autoformatters:

inv fmt

This is the same as running each autoformatter individually:

inv black
inv isort
inv docformatter

Lint

To run all linters:

inv lint

This is the same as running each linter individually:

inv flake8
inv pylint

Test

To run all unit tests:

inv unit

To run unit tests and builds:

inv test

Test on All Supported Python Versions

To run tests on all supported Python versions:

tox

This requires that the supported versions are available on the PATH.

4.3. Developer Guide 33

http://docs.pyinvoke.org

shelmet Documentation, Release 0.6.0

Build Package

To build the package:

inv build

This will output the source and binary distributions under dist/.

Build Docs

To build documentation:

inv docs

This will output the documentation under docs/_build/.

Serve Docs

To serve docs over HTTP:

inv docs -s|--server [-b|--bind 127.0.0.1] [-p|--port 8000]

inv docs -s
inv docs -s -p 8080
inv docs -s -b 0.0.0.0 -p 8080

Delete Build Files

To remove all build and temporary files:

inv clean

This will remove Python bytecode files, egg files, build output folders, caches, and tox folders.

Release Package

To release a new version of the package to https://pypi.org:

inv release

4.3.4 CI/CD

This project uses Github Actions for CI/CD:

• https://github.com/dgilland/shelmet/actions

34 Chapter 4. Guide

https://pypi.org
https://docs.github.com/en/free-pro-team@latest/actions
https://github.com/dgilland/shelmet/actions

CHAPTER

FIVE

PROJECT INFO

5.1 License

MIT License

Copyright (c) 2020 Derrick Gilland

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.2 Versioning

This project follows Semantic Versioning.

5.3 Changelog

5.3.1 v0.6.0 (2021-03-29)

• Change return type for ls, lsfiles, lsdirs, walk, walkfiles, and walkdirs to an iterable class, Ls.
Previously, these functions were generators.

• Add option to backup to an archive file in backup.

• Add functions:

– archive

– chmod

– chown

35

http://semver.org/

shelmet Documentation, Release 0.6.0

– lsarchive

– unarchive

5.3.2 v0.5.0 (2021-03-04)

• Import all utility functions into shelmet namespace.

• Remove shelmet.sh catch-all submodule in favor of splitting it into smaller submodules, shelmet.
filesystem and shelmet.path. Recommend using import shelmet as sh as primary usage pat-
tern instead of importing submodules. breaking change

• Add functions:

– backup

– read

– readbytes

– readchunks

– readlines

– readtext

– write

– writebytes

– writelines

– writetext

5.3.3 v0.4.0 (2021-01-26)

• Rename sh.command to sh.cmd. breaking change

• Add methods to sh.Command / sh.command:

– Command.and_

– Command.or_

– Command.after

5.3.4 v0.3.0 (2020-12-24)

• Add to sh module:

– Command

– command

– cwd

– homedir

– run

36 Chapter 5. Project Info

shelmet Documentation, Release 0.6.0

5.3.5 v0.2.0 (2020-11-30)

• Add to sh module:

– atomicdir

• Rename atomic_write to atomicfile. breaking change

5.3.6 v0.1.0 (2020-11-16)

• First release.

• Add sh module:

– atomic_write

– cd

– cp

– dirsync

– environ

– fsync

– getdirsize

– ls

– lsdirs

– lsfiles

– mkdir

– mv

– reljoin

– rm

– rmdir

– rmfile

– touch

– umask

– walk

– walkdirs

– walkfiles

5.3. Changelog 37

shelmet Documentation, Release 0.6.0

5.4 Authors

5.4.1 Lead

• Derrick Gilland, dgilland@gmail.com, dgilland@github

5.4.2 Contributors

None

5.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.5.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/dgilland/shelmet.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” or “help wanted” is open to
whoever wants to implement it.

Write Documentation

shelmet could always use more documentation, whether as part of the official shelmet docs, in docstrings, or even on
the web in blog posts, articles, and such.

38 Chapter 5. Project Info

mailto:dgilland@gmail.com
https://github.com/dgilland
https://github.com/dgilland/shelmet

shelmet Documentation, Release 0.6.0

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dgilland/shelmet.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.5.2 Get Started!

Ready to contribute? Here’s how to set up shelmet for local development.

1. Fork the shelmet repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_username_here/shelmet.git

3. Install Python dependencies into a virtualenv:

$ cd shelmet
$ pip install -r requirements.txt

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. Autoformat code:

$ inv fmt

6. When you’re done making changes, check that your changes pass all unit tests by testing with tox across all
supported Python versions:

$ tox

7. Add yourself to AUTHORS.rst.

8. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "<Detailed description of your changes>"
$ git push origin name-of-your-bugfix-or-feature-branch

9. Submit a pull request through GitHub.

5.5. Contributing 39

https://github.com/dgilland/shelmet

shelmet Documentation, Release 0.6.0

5.5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. The pull request should work for all versions Python that this project supports.

40 Chapter 5. Project Info

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

41

shelmet Documentation, Release 0.6.0

42 Chapter 6. Indices and Tables

PYTHON MODULE INDEX

s
shelmet, 13

43

shelmet Documentation, Release 0.6.0

44 Python Module Index

INDEX

A
after() (shelmet.Command method), 17
and_() (shelmet.Command method), 17
archive() (in module shelmet), 18
ArchiveError, 15
atomicdir() (in module shelmet), 19
atomicfile() (in module shelmet), 19

B
backup() (in module shelmet), 20

C
cd() (in module shelmet), 21
chmod() (in module shelmet), 21
chown() (in module shelmet), 22
cmd() (in module shelmet), 22
Command (class in shelmet), 15
cp() (in module shelmet), 23
cwd() (in module shelmet), 23

D
dirsync() (in module shelmet), 23

E
environ() (in module shelmet), 23

F
fsync() (in module shelmet), 23

G
getdirsize() (in module shelmet), 23

H
homedir() (in module shelmet), 24

L
Ls (class in shelmet), 18
ls() (in module shelmet), 24
lsarchive() (in module shelmet), 24
lsdirs() (in module shelmet), 24
lsfiles() (in module shelmet), 25

M
mkdir() (in module shelmet), 25
module

shelmet, 13
mv() (in module shelmet), 25

O
or_() (shelmet.Command method), 17

P
parents() (shelmet.Command property), 17
pipe() (shelmet.Command method), 17

R
read() (in module shelmet), 26
readbytes() (in module shelmet), 26
readchunks() (in module shelmet), 26
readlines() (in module shelmet), 27
readtext() (in module shelmet), 27
reljoin() (in module shelmet), 27
rm() (in module shelmet), 27
rmdir() (in module shelmet), 28
rmfile() (in module shelmet), 28
run() (in module shelmet), 28
run() (shelmet.Command method), 17

S
shell_cmd() (shelmet.Command property), 17
shelmet

module, 13

T
touch() (in module shelmet), 28

U
umask() (in module shelmet), 28
unarchive() (in module shelmet), 29
UnsafeArchiveError, 18

W
walk() (in module shelmet), 29

45

shelmet Documentation, Release 0.6.0

walkdirs() (in module shelmet), 30
walkfiles() (in module shelmet), 30
write() (in module shelmet), 31
writebytes() (in module shelmet), 31
writelines() (in module shelmet), 31
writetext() (in module shelmet), 31

46 Index

	Links
	Features
	Quickstart
	Guide
	Installation
	API Reference
	Developer Guide
	Python Environments
	Tooling
	Workflows
	CI/CD

	Project Info
	License
	Versioning
	Changelog
	v0.6.0 (2021-03-29)
	v0.5.0 (2021-03-04)
	v0.4.0 (2021-01-26)
	v0.3.0 (2020-12-24)
	v0.2.0 (2020-11-30)
	v0.1.0 (2020-11-16)

	Authors
	Lead
	Contributors

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines

	Indices and Tables
	Python Module Index
	Index

